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Predators can directly and indirectly alter the foraging behaviour of prey
through direct predation and the risk of predation, and in doing so, initiate
indirect effects that influence myriad species and ecological processes. We
describe how wolves indirectly alter the trajectory of forests by constraining
the distance that beavers, a central place forager and prolific ecosystem
engineer, forage from water. Specifically, we demonstrate that wolves wait
in ambush and kill beavers on longer feeding trails than would be expected
based on the spatio-temporal availability of beavers. This pattern is driven
by temporal dynamics of beaver foraging: beavers make more foraging
trips and spend more time on land per trip on longer feeding trails that
extend farther from water. As a result, beavers are more vulnerable on
longer feeding trails than shorter ones. Wolf predation appears to be a selec-
tive evolutionary pressure propelled by consumptive and non-consumptive
mechanisms that constrain the distance from water beavers forage, which in
turn limits the area of forest around wetlands, lakes and rivers beavers alter
through foraging. Thus, wolves appear intricately linked to boreal forest
dynamics by shaping beaver foraging behaviour, a form of natural disturbance
that alters the successional and ecological states of forests.
1. Introduction
Predators directly and indirectly alter the foraging behaviour of their prey
through direct predation (consumptive effects) or the fear of predation (non-
consumptive effects) [1–3]. Predation, or the risk thereof, can affect when
prey forage [4,5], where prey forage [6,7], how long prey forage in particular
areas [8,9], and the intensity of prey foraging [10]. Furthermore, predation
can shape prey foraging behaviour by reducing or increasing fitness costs
associated with particular foraging strategies [1,11]. By altering the foraging be-
haviour of their prey, predators can indirectly influence the growth and
regeneration of lower trophic levels that prey species consume [12–14]. In
doing so, predators can initiate ecosystem-level effects that influence myriad
species and ecological processes [15,16].

Central place foragers have unique foraging constraints and decisions
because all foraging activity radiates out from a central location [17,18]. Much
work has been done to understand how central place foragers make movement
decisions [19]; in particular, how central place foragers balance the energetic costs
and rewards of foraging at greater distances from the central place with the pre-
dation risk of doing so [20–22]. Implicit in this previous work is that central place
foragers are at a higher risk of encountering and being killed by predators at
greater distances from the central place [23]. However, there is little empirical
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evidence to demonstrate that prey encounter, and are killed
more frequently by, predators farther from the central place.
Instead, most studies have examined how central place fora-
ging prey respond to proxies of predation risk (e.g. predator
scent, sound, facsimiles or other cues) at varying distances
from the central place to indirectly evaluate how predation
shapes foraging decisions [22,24]. Researchers assume the
proxy sufficiently represents predation risk to prey, and thus
the prey’s response indicates the extent to which predators
alter foraging behaviour [7]. However, studies using these
approaches do not necessarily simulate predation risk as
experienced by prey [23,25], nor do they account for both the
consumptive and non-consumptive aspects of predation [2].

Empirical evidence of how predators hunt and kill central
place foraging prey in relation to distance from the central
location would be beneficial for assessing how predators
can alter central place foraging behaviour [7]. Understanding
this relationship would be particularly insightful because
central place foragers can alter localized ecological dynamics
around central places [26,27], and ultimately affect larger eco-
system-level processes [28–30]. For example, western fence
lizards (Sceloporus occidentalis) altered plant biomass and
vegetation structure by reducing the abundance of grasshop-
pers—their primary prey—around their central place [28].
Thus, predators could, by constraining or altering the fora-
ging behaviour of central place foraging prey, indirectly
alter larger ecological processes [31].

The widespread distribution of beavers (Castor spp.) and
the relative ease of studying their foraging decisions (beavers
forage along conspicuous ‘feeding trails’ and leave visible
stumps after cutting trees) has led to extensive research on
central place foraging behaviour using beavers as a model
species [20,24,32]. In particular, much empirical and exper-
imental work has examined the extent to which beavers
balance energy maximization and predation risk while fora-
ging [20,33–35]. Such work has shown that while beavers
generally follow an energy maximization strategy, their fora-
ging strategies are modified by environmental or biological
factors (i.e. predation risk) that constrain and alter foraging
behaviour [32]. These findings comport with numerous
studies that have concluded, based on various indirect evi-
dence, that beavers preferentially forage closer to the safety
of water to minimize predation risk [36–39]. All of this indi-
cates that predators shape beaver foraging behaviour
through non-consumptive mechanisms (i.e. beavers reduce
foraging distance in response to predation risk [31]) or via
consumptive mechanisms where predators disproportio-
nately remove individuals who forage farther from water.
However, there has been no direct evidence that predators
hunt or kill beavers more frequently farther from water [23].

Wolves (Canis lupus) and beavers co-occur across most
boreal ecosystems in North America and Eurasia [40].
Wolves are the primary predator of beavers wherever the
two species co-occur, and beavers are important seasonal
prey for wolves [40]. Although wolves are primarily cursorial
predators, they often use ambush strategies to hunt and kill
beavers [41,42]. Still, a substantial proportion of predation
is the result of opportunistic encounters [23,43]. Because
wolves are apex predators [44] and beavers are ecosystem
engineers [45], wolf predation on beavers can have outsized
ecological effects. For example, by killing dispersing beavers,
wolves alter the creation and recolonization of wetlands, and
in turn, alter all of the ecological effects associated with
beaver-created wetlands [46]. Logically, wolf predation
could also have indirect ecological effects by shaping
beaver foraging behaviour.

Beavers, by selectively cutting and felling trees, are agents
of natural disturbance that alter and shift the trajectory of for-
ests around wetlands and shorelines (figure 1) [45,47,48].
Beavers primarily alter forest composition and structure by
(1) resetting forest succession by creating gaps in the canopy
which allow early successional, shade-intolerant species (e.g.
aspen) to thrive (figure 1a,b) [47], (2) shifting forest commu-
nities toward deciduous stands of tree species less preferred
by beavers (e.g. black ash and alder) [49], and/or (3) convert-
ing deciduous or mixed forests to conifer-dominated forests by
selectively removing deciduous trees (figure 1c,d) [31,50,51]. In
the latter instance, wetlands or waterways become surrounded
by a well-defined narrow ring, or halo, of conifer forest
(figure 1) [31,51]. Notably, the area of forest beavers alter in
an ecosystem is directly related to the distance from water
that beavers forage; foraging at increased distances from
water increases the area of forest altered and vice versa. There-
fore, any factor that alters beaver foraging behaviour would
undoubtedly have reverberating effects on forests themselves.
Peterson et al. [31] posited, based on aerial imagery and beaver
foraging patterns, that wolves altered forests on Isle Royale
National Park by limiting the distance from water beavers
forage, although this idea has yet to be tested.

Herein, we describe and demonstrate how wolf predation
is a selective pressure that shapes the foraging behaviour of
beavers via consumptive and non-consumptive mechanisms
in the Greater Voyageurs Ecosystem (GVE), Minnesota. By
altering beaver foraging behaviour, wolves invariably alter
the ecological trajectory of forests around wetlands and
beaver-occupied water sources (e.g. lakes, rivers).
2. Study area
Our study was conducted as part of the Voyageurs Wolf Project,
which studies the ecology of wolves and their prey in and
around Voyageurs National Park, MN, USA, an area we refer
to as the GVE. The GVE is typical of a southern boreal ecosystem
situated in the Laurentian Mixed Forest Province. The landscape
is typified by dense forests (deciduous, coniferous and mixed)
and abundant lakes, bogs, and wetlands interspersed with
outcrops and rocky ridges from glacial activity. The GVE has sus-
tained dense wolf (average density of 58 wolves per 1000 km2

[52]) and beaver populations (>0.47–2.0 colonies per km2

[53,54]) for more than 30 years. Beavers are important seasonal
prey for wolves in the GVE with beaver constituting up to
42% of wolf pack diets from April to October (the ice-free
season) when beavers are vulnerable to predation [55]. For
more information on the GVE, see Gable et al. [46].
3. Methods
(a) Wolf predation behaviour from searching clusters of

GPS locations
During 2015–2022, we captured wolves using foot-hold traps
and cable restraints and fitted them with GPS collars. We then
visited clusters of GPS locations during April–October to identify
predation events and ambush locations (Institutional Animal
Care and Use Committee: MWR_VOYA_WINDELS_WOLF and



uncut
conifers

(a) (b)

(c) (d)

Figure 1. Beavers alter the structure and composition of forests around their ponds by selectively cutting preferred deciduous tree species in the Greater Voyageurs
Ecosystem, MN, USA. Their selective foraging can convert forests around wetlands and waterways to early successional states such as in (a) and (b), where beavers
removed almost every aspen tree within 20–30 m of the pond. The only trees that beavers did not cut were conifers (b). Over time, the forests around beaver ponds
become dominated by conifers (c,d) or less preferred deciduous species. This conversion to conifer-dominated forests often results in a conifer ring or halo (white line
in (c) and (d )) around shorelines that is visible from aerial imagery. Photo credit for (a) and (d): St. Louis County, MN; photo credit for (b) and (c): Tom Gable.
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UMN protocol no. 2207-40241A). We considered a cluster to be
≥2 consecutive locations ≥20 min apart and within a 200 m
radius of one another based on previous work indicating these
cluster criteria are sufficient to study wolf predation on beavers
[23,46]. On average, we searched clusters within 5.8 days after
the cluster occurred and each cluster was searched once.

When at GPS clusters, we searched the area systematically for
evidence of a predation event. Such evidence included tufts of
fur, stomach contents, skull/lower mandible, bones and castor
glands in an area of disturbance or trampled vegetation [41].
When we located wolf-killed beavers, we noted the habitat fea-
ture (e.g. feeding trail, dam) at which the beaver was killed
[23]. Additional information on GPS-cluster search methods
can be found in previous studies by Gable et al. [23,41]. If beavers
were killed at feeding trails, we measured the feeding trail length
(distance from water to the end of the trail) to the nearest metre
by walking the contour of the trail [23]. In other words, trail
length is not the straight-line distance from the end of the trail
to water but rather the distance the beaver would have to
move along the trail from water to reach forage at the end of
the trail (i.e. a beaver’s travel path). Nonetheless, beaver feeding
trails are relatively straight trails that extend perpendicularly
from water to where beavers are actively cutting trees. Beavers
almost always forage at the end of feeding trails (i.e. they do
not create trails that are any longer than needed to secure
forage), and trails only become longer as beavers venture further
inland to cut additional trees.

We also documented instances where wolves waited in
ambush for beavers but did not make a kill (i.e. ‘ambush
attempts’). We defined ambush attempts to be ≥2 consecutive
locations <25 m apart, of which 50% had to be ≤15 m from
fresh beaver activity (e.g. fresh cuttings and mud on scent
mound [23,41]). In other words, ambush attempts were a tight
cluster of wolf locations near recent beaver activity but where
no kill was found. When ambush attempts were found, we
recorded the beaver habitat feature (e.g. feeding trail, beaver
dam, lodge; [23]) at which wolves waited. If ambush attempts
were along active feeding trails (those with fresh or recent
beaver activity), we recorded the length of the feeding trail to
the nearest metre [23]. However, we did not record data on
feeding trail length at ambush attempts before 2018.
(b) Temporal patterns of beaver foraging using remote
cameras

To understand and assess temporal patterns of beaver foraging
behaviour, we deployed remote cameras on feeding trails in
2017 and 2018. Detailed methods are available in electronic sup-
plementary material, A. Briefly, we deployed cameras on three
active feeding trails at individual beaver colonies for two
weeks in the spring, summer, and fall to assess seasonal changes
in foraging behaviour. We assumed active trails were those with
fresh cuttings, trampled vegetation and other signs indicative of
recent beaver use. We recorded the length of feeding trails that
cameras were deployed on. Using remote camera photographs,
we calculated the number of foraging trips beavers made on
trails and the duration of these foraging trips.



0 20 40
feeding trail length (m)

60 80

reference
ambush
kill

Figure 2. The length of feeding trails that beavers foraged along (‘reference’, n = 1111), that wolves waited in ambush along (‘ambush’, n = 949) and that wolves
killed beavers along (‘kill’, n = 128) the Greater Voyageurs Ecosystem, MN, USA. Each plot shows the distribution of the raw data collected on each trail type and the
individual circles within each violin plot represent individual feeding trails. The dashed black line represents the median value of the raw data.
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(c) Assessing spatial patterns of beaver foraging from
feeding trails

We collected additional field data on beaver foraging for each
colony at the end of each camera deployment period for each
of the three seasons to assess seasonal changes in spatial patterns
of beaver foraging. Specifically, we measured the length (nearest
metre) of all new active feeding trails as well as the total number
of active feeding trails used by a colony. As described above, we
considered active trails those that had signs of recent beaver use
(e.g. fresh cuttings, trampled vegetation). At pond colonies, we
recorded all active trails around the entire perimeter of the pri-
mary pond and any secondary ponds that the colony was
using. Based on previous work on the movement patterns and
foraging behaviour of beavers in the GVE [56,57], we recorded
all active trails at lake colonies that were within a 400 m radius
of the colony’s lodge. These feeding trails (hereafter referred to
as ‘reference trails’) should be a representative sample of the
feeding trails that beavers use for foraging and should represent
the distance from water that beavers generally forage.

(d) Analyses
We estimated the typical length of reference trails (determined by
assessing spatial patterns of beaver foraging) using linear mixed-
effects models. Similarly, we used linear mixed-effects models to
estimate the typical length of trails where wolves waited in
ambush (ambush trails) and where they killed beavers (kill
trails). Because trail lengths were right skewed (figure 2), log
transformations were used to better meet the assumptions of
the models (e.g. normally distributed errors with constant
within-cluster variance). We considered using logistic regression
for our analysis but doing so would have prevented us from cap-
turing valuable aspects of the study design; in particular,
repeated measures at the beaver-colony level (for reference
trails) and at the wolf-level (for ambush and kill trails). Specifi-
cally, we fitted separate models to these two data sets
(reference beaver feeding trails and wolf ambush/kill trails),
including random effects associated with ‘colony ID’ in the
former model and ‘wolf ID’ in the latter. For reference feeding
trails, we modelled how the log of trail length varied by season
(spring/summer/fall) and colony type (pond/lake) with a
random intercept included for each colony ID and a set of
random slopes to allow seasonal effects to vary by colony. For
kill and ambush trails, we modelled how the log of trail length
varied based on the interaction of trail type (kill/ambush) and
season (spring/summer/fall) with a random intercept for each
wolf and a set of random slopes to allow seasonal effects to
vary by wolf. We used coefficients and their standard errors
from the two different models (reference versus kill/ambush)
to calculate z-scores and p-values to assess if there were discern-
ible differences in the median length of reference versus ambush
trails and reference versus kill trails across seasons (e.g. we com-
pared ambush trails in fall to reference trails in fall and kill trails
in fall to reference trails in fall).

We used a negative binomial mixed-effect model to assess
how the number of foraging trips on a trail varied as a function
of trail length, season and the number of trails used by a colony.
We scaled and centred trail length and number of trails used by a
colony to have mean = 0 and s.d. = 1. We used the log of camera
deployment duration (in days) as an offset to account for variable
deployment period (13–17 days). We included a random inter-
cept for colony ID and attempted to include a set of random
slopes to allow seasonal effects to vary by colony, but the
model would not converge. Thus, we used the simplified
random intercept only model for inference.

To assess factors influencing foraging trip duration, we used
a linear mixed-effect model to examine how the log of foraging
trip duration varied as a function of feeding trail length, season
and number of trails used by a colony. We included a random
intercept for colony ID and a set of random slopes to allow
seasonal effects to vary by colony.

We then estimated a cumulative distribution function (CDF) to
represent the distribution of time spent by beavers on trails of
different trail lengths. Importantly, this approach allowed us to
estimate the cumulative time beavers spend foraging as distance
from water increases. To do so, we: (1) determined a representa-
tive set of trail lengths by resampling lodges with replacement
from our reference trail data set (we included all trails associated
with those lodges); (2) generated predictions for these trails, both
for the number of trips and time spent per trip, using generalized
linear mixed-effect models parameterized using data from the
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remote cameras; and (3) multiplied the number of trips by the
time spent per trip to get a distribution of the time spent foraging
on trails of different trail lengths. To capture uncertainty in the
CDF representing the time beavers spent foraging on trails of
different trail lengths, we repeated this process 1000 times, incor-
porating uncertainly in the parameters of the generalized linear
mixed-effect models using a parametric bootstrap. We then esti-
mated CDFs representing the relative frequencies of wolf
ambush and kill events as a function of trail length. We used a
cluster-level bootstrap [58], resampling wolf IDs with replacement,
to represent uncertainty in these estimated CDFs. All analyses
were conducted using the R programming language and the
mixed-effects modelling was done with the lme4 package [59].

(e) Estimating the indirect effects of wolves on forest
structure and composition

We sought to estimate how forest area affected by beaver
foraging at a landscape-scale changes as a function of how far
beavers forage from water. In brief, we digitized all beaver-
created ponds—occupied or abandoned—in the GVE using
high-resolution aerial imagery [49,60,61] and long-term aerial
beaver survey data [46,62]. Then, we used the multiple ring
buffer tool in ArcGIS Pro 2.8 to create ‘forage buffers’ around
the outside of each pond complex or lodge (for lake/river colo-
nies) from 1 to 30 m in 1 m increments. We then summed the
area of all forage buffers at 1 m increments (1 m, 2 m,… 30 m) to
describe how forest area available to beaver foraging in the GVE
increased with increasing distance from water. We then fitted a
quadratic equation (R2 = 0.999) to these results that allowed us
to calculate the forest area available to beaver foraging at any
given distance from water. For a more detailed description of
these methods, see electronic supplementary material, B and C.

We then used this information to estimate the forest area
wolves alter or influence by constraining beaver foraging (see
electronic supplementary material, C). We first determined the
amount of forest in the GVE that wolves would indirectly alter
if they constrained beaver foraging by a single metre. We then
attempted to estimate the extent to which we think wolves
might actually constrain beaver foraging, and indirectly alter for-
ests. To do so, we assumed the median distance beavers would
forage in the absence of wolves would be the same as the pre-
dicted median length of kill trails. In other words, we assumed
the forest area between predicted median length of reference
and kill trails, based on our mixed-effects modelling approach
as described above, was generally indicative of the extent to
which wolf predation constrains beaver foraging (i.e. reduces
the area beavers predominantly forage in). Importantly, our
objective in using this approach was to understand the relative
magnitude of the indirect effect of wolf predation on forests
(sensu [46]). Estimates generated with this approach are coarse
but helpful for thinking about how wolf predation might alter
ecological processes at the landscape scale. We calculated pre-
dicted median length of reference and kill trail values using the
‘ggemmeans()’ function in the ggeffects package in R [63].
Although we modelled trail length (as described above) on the
log scale (i.e. log[trail length]), we obtained predicted values
on the original scale (m). Thus, the predicted values represent
the median trail length of the median individual (wolf or
colony) in our sample.
4. Results
We searched 27 741 clusters of GPS locations from 51 wolves
during 2015–2022. In doing so, we identified 543 wolf-killed
beavers and 1909 instances where wolves attempted to
ambush beavers. Of the 543 wolf-killed beavers, 135 (25%)
were killed on feeding trails and we recorded the length of
feeding trails at 128 of these kills. Of the 1909 ambushing
attempts, 949 (50%) were at feeding trails. All other kills and
ambush attempts occurred at other beaver features including
beaver dams, scent-mounds, feeding canals and lodges.

(a) Beaver foraging and wolf predation based on GPS-
clusters and feeding trails

To assess reference feeding trail length in the GVE, we
measured 1111 beaver feeding trails from 36 beaver colonies
during 2017–2018 (figure 2). Spring feeding trails were on
average shorter than fall trails (ßspring =−0.28, 95% confidence
interval [CI] =−0.49 to −0.09) but we did not detect a differ-
ence between spring and summer trail length or summer and
fall trail length (figure 3). We did not detect a difference in
feeding trail length between beaver colonies living in lakes
or ponds (ß =−0.08, 95% CI =−0.34 to 0.17). Ambush (n =
949) and kill trails (n = 128) were, on average, longer than
reference feeding trails regardless of season (p < 0.05; figures 2
and 3), but we did not detect a difference in length between
ambush and kill trails (figure 3).

(b) Temporal patterns of beaver foraging using remote
cameras

We placed remote cameras on 201 feeding trails across 35
colonies during 2017–2018. Our cameras took 145 295 pic-
tures which yielded 4705 terrestrial beaver events. We
recorded beavers exiting and entering the water (i.e. round-
trip foraging events) in 2113 events that occurred at 118 feed-
ing trails. The number (ß = 0.35; 95% CI = 0.08 to 0.63) and
duration (ß = 0.010; 95% CI = 0.002 to 0.018) of foraging
events on feeding trails increased with feeding trail length
(figure 4). After adjusting for trail length, the duration of fora-
ging events did not vary across seasons, but the number of
foraging events was higher on feeding trails in fall than in
spring or summer (ßspring =−0.57, 95% CI =−1.13 to 0.006,
p = 0.051; and ßsummer =−0.59, 95% CI =−1.12 to −0.05, p =
0.03; figure 4). We did not detect an association between
the number of active feeding trails used by a colony and
the duration of foraging events (ß =−0.006; 95% CI =−0.014
to 0.0007) or the number of foraging events on feeding
trails (ß =−0.10; 95% CI =−0.39 to 0.25).

Although the expected number of foraging trips and
expected time spent per foraging trip increased with feeding
trail length, beavers cumulatively spent most of their time
foraging on shorter trails (figure 5). Indeed, beavers spent
an estimated 50% (95% CI: 32–69%) of their time foraging
on trails less than ≤15 m and 75% of their time foraging on
trails ≤28 m. By contrast, only 15% and 24% of kills and
ambushes, respectively, occurred on trails ≤15 m long, and
50% and 57% occurred on trails ≤28 m long. This contrast
is apparent in the CDF curves, which indicate wolves dispro-
portionately killed and ambushed beavers at longer trails
than beavers chose to use most often (figure 5).

(c) Estimating the indirect effect of wolves on forests
We digitized 7175 beaver-created wetlands using aerial ima-
gery and 1317 beaver lodges along lakeshores and rivers that
were identified via aerial surveys. We then assessed how the
total amount of forest area available to beavers for foraging
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Figure 3. The relationship between feeding trail length of beavers, trail type (reference, ambush or kill trails), and season in the Greater Voyageurs Ecosystem, MN,
USA based on linear mixed-effect models. Reference trails (n = 1111) were a representative sample of feeding trails that beavers used for foraging, ambush trails
(n = 949) were feeding trails where wolves waited in ambush for beavers, and kill trails (n = 128) were feeding trails where wolves killed beavers. Point estimates
and 95% confidence intervals were obtained by setting all random effects to 0 and then exponentiating the estimated log means. Thus, these point estimates
represent estimated median trail lengths for a typical colony or wolf with all random effects set equal to 0 [64]. The large confidence interval for kill trails in spring
is due to small sample size (n = 10).
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(i.e. the foraging buffers described earlier) increased with dis-
tance from water (figure 6). Using these calculations, we
estimate that for every metre that wolves constrain beaver fora-
ging, they indirectly influence or alter—depending on distance
from water—1.3–2.9 km2 of forest in the GVE (figure 6).

Predicted median length of reference trails for the typical
beaver colony was 11.3–14.9, depending on season, whereas
predicted median length of kill trails for the typical wolf,
depending on season, was 23.1–28.8 (figure 3). These values
indicate wolves may constrain beaver foraging by up to 8.7–
17.5 m (estimated difference in median trail length between
kill and reference trails is 8.7 m in fall and 17.5 m in spring;
figure 3) and may have reduced the area beavers predomi-
nantly forage in by as much as 43–69% (figure 7). As such,
we estimate wolves may be indirectly influencing the structure
and composition of roughly 23–47 km2 of forest by altering
beaver foraging behaviour (figure 6). Put differently, we esti-
mate wolves may indirectly influence or alter up to 1.4–2.9%
of the forest in the GVE (GVE landmass = 1617 km2).
5. Discussion
We present direct evidence that wolves, through ambush be-
haviour and direct killing, constrain beaver foraging closer to
the safety of water. Wolves killed and ambushed beavers at
substantially longer feeding trails than would be expected
based on the spatio-temporal availability of foraging bea-
vers—a pattern that is probably driven by the fact that
beavers make more and longer foraging trips on longer feed-
ing trails (figures 3 and 4). These patterns indicate wolf
predation is likely a selective evolutionary pressure propelled
by both consumptive and non-consumptive mechanisms that
shape beaver foraging behaviour. Because beavers are a
source of natural disturbance that alters the structure and
composition of forests through their tree-cutting behaviour,
we argue wolves indirectly alter the trajectory of forests
around wetlands and other water features (e.g. lakes, rivers)
by constraining beaver foraging behaviour.
(a) Predation as a selective pressure
Wolf predation appears to be a strong selective pressure on
beaver foraging behaviour. The predicted median length of
‘kill trails’ was 58–154% longer, depending on season, than
the predicted median length of reference feeding trails
(figure 3). This pattern strongly suggests that predation risk
for beavers is greater on longer trails and that wolves, and
likely other predators, play a key evolutionary role in shaping
beaver foraging by disproportionately removing individuals
that forage farther from water. Wolf predation could be a par-
ticularly strong selective pressure on foraging behaviour
because older beavers—typically breeding adults—often
forage on land more frequently than younger beavers
[65–68]. Thus, wolves may kill breeding individuals that
forage farther from water more often and, more importantly,
kill breeding individuals that forage closer to water less often.
We speculate that over time, breeding beavers that forage
closer to water might have higher fitness and produce
offspring with similar foraging behaviours.

Beavers are more vulnerable to predation on longer trails
because the duration of foraging trips increases with trail
length as does the frequency of foraging trips (figure 4).
The reasons for this are probably two-fold: (1) the time
needed to travel to and then transport cut trees back to
water increases with distance from water [20], and (2) beavers
in the GVE, similar to many other areas (e.g. [49,69]), selec-
tively cut larger diameter trees as distance from water
increases [70]. Although larger diameter trees require more
time and trips to cut and transport back to water relative to
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smaller trees, they yield substantially more food [20,33,35].
As beavers forage further inland, they appear to cut larger
diameter trees to ensure that the reward of foraging farther
from the safety of water outweighs the increased risk of pre-
dation [35,71]. However, beavers in the GVE clearly prefer to
forage in close proximity to water when possible, as 50% of
the time beavers spent foraging occurred on trails ≤15 m
long and 76% on trails ≤30 m long (figures 2 and 5).
(b) Ambushing behaviour as a non-consumptive
mechanism

In addition to shaping beaver foraging via direct killing, we
suspect wolves, through their ambushing behaviour, con-
strain beaver foraging behaviour via non-consumptive
mechanisms. Ambush predators are more likely to alter the
behaviour of prey than cursorial predators because ambush
predator cues are more concentrated in time and space [16].
As such, prey can more readily ascertain where predators
wait in ambush and, in turn, adjust their behaviour to mini-
mize encounters [72]. Through this process, ambush
predators can substantially alter or reduce the movements
and habitat domain of their prey through non-consumptive
mechanisms (i.e. predation risk [4,16]). For example, sit-
and-wait spiders reduced aspects of grasshopper habitat
domain by up to 50–60% [73]. Even in the absence of preda-
tion, beavers have relatively narrow habitat domains given
the energetic cost of cutting and transporting trees back to
water [71]. However, wolf predation appears to narrow
beaver habitat domain even further with wolves constraining
the forest area predominantly used by beavers for foraging by
up to 43–68% (figure 6). Teasing apart whether wolf preda-
tion as a consumptive or non-consumptive mechanism is
most responsible for this pattern is difficult to determine.
Yet, the answer is likely inconsequential because both
forces operate simultaneously.

Ambush trails were longer than reference trails, indicating
wolves chose to wait in ambush for beavers along longer trails.
Beavers can be challenging prey for wolves to kill and are able
to successfully evade wolves once attacked [42,54]. Distance to
water is likely the most important factor influencing a beaver’s
probability of escape [23], and it is therefore not surprising that
wolves wait in ambush on feeding trails where beavers are
more available and vulnerable to predation. Previous work
has demonstrated that wolves in the GVE choose ambush
locations in response to the sensory abilities and anti-predator
strategies of beavers [23]. We suspect wolves may select
ambush locations based on the concentration or recency of
beaver odorants, which are likely to be denser or fresher on
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longer trails because beavers spend more time there relative to
shorter trails [25,74]. Wolves, like domestic dogs, have well-
developed olfactory abilities that are almost certainly capable
of detecting subtle differences in the recency and concentration
of beaver odorants [75,76]. Other ambush predators, such as
certain snake species, select ambush locations based on olfac-
tory cues that confer prey availability or prey-rich patches
[77–80]. Thus, wolves might wait in ambush along trails
where beaver odorants are most concentrated because they
assume this reflects increased beaver availability and their
prospects of encountering beavers.
(c) The indirect effects of predation on forests
Given the profound impacts of beaver foraging on forests
(figure 1), we assert that if wolves constrain beaver foraging
in any meaningful way—even if only by 1 or 2 m—then
wolves indirectly influence the trajectory of forests around
wetlands and shorelines. We have provided strong evidence
that wolves do constrain foraging by disproportionately kill-
ing and ambushing beavers along longer feeding trails that
are less numerous and used less frequently than shorter feed-
ing trails (figures 2 and 5). In other words, wolves kill
beavers at greater distances from water than would be
expected based on the spatio-temporal availability of beavers
when foraging. As such, wolves appear to limit the extent
that beavers can disturb forests through foraging activities,
thereby preventing beavers from altering the successional
and ecological states of forests (figure 7). However, disturb-
ance from beaver foraging affects many other ecological
processes beyond forest structure and composition. Beaver
foraging creates ecological heterogeneity and increases biodi-
versity around wetlands by increasing forest complexity—
particularly by creating ‘messy forests’ with substantial
dead and standing wood [71]. This in turn affects nutrient
deposition and carbon storage, composition of lichen,
bryophyte and plant communities, and habitat for, and abun-
dance of, invertebrates, birds and mammals around beaver-
altered environments [45,51,71]. Consequently, wolves, by
reducing the amount of forest beavers can disturb, alter all
of these ecological processes as well. In this sense, our
work is analogous to previous work in the GVE which
demonstrated that wolves indirectly alter all of the ecological
processes associated with beaver-created wetlands by killing
dispersing beavers and altering wetland creation-recoloniza-
tion dynamics [46]. Combined, these studies indicate that
wolves alter both riparian and terrestrial ecosystems by limit-
ing and/or stopping the ecosystem engineering of beavers.
Notably, the magnitude (forest altered per km2) of wolves’
indirect effect on forests is almost certainly related to beaver
colony density because beavers probably alter more forest
per unit area at higher densities. Thus, as beaver density
increases the indirect effect of wolves on forests likely
increases as well.

Estimating or quantifying the extent to which wolves may
indirectly alter forests by constraining beaver foraging behav-
iour is challenging. We suspect wolf predation primarily
shifts the overall distribution of beaver foraging toward
water (figure 6), though wolves may also influence the maxi-
mum distance from water beavers forage [37]. Put differently,
beavers would forage more frequently and intensively at
greater distances from water if wolves were not present.
Researchers have surmised that predation constrains beaver
foraging [23] based on differences in beaver foraging behav-
iour in predator-free and predator-dense environments. For
example, non-native beavers in a largely predator-free
system in Tierra del Fuego, South America foraged much
farther from water than beavers in North American systems
with higher predation pressure [38]. Beavers on islands
with dense black bear populations in Apostle Island National
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Lakeshore, WI, USA appeared to forage substantially closer
to water than beavers on nearby bear-free islands, where bea-
vers foraged >200 m [36]. Similarly, beavers in Kostrama,
Russia, where wolves and brown bears were abundant, for-
aged closer to water than beavers in a predator-free system
in Germany [39]. Before wolves colonized Slate Island Pro-
vincial Park, Ontario, Canada beavers supposedly foraged
>400 m from water [81]. Barnes & Mallik [37] noted that bea-
vers in wolf-dense ecosystems typically foraged within 20 m
of water—similar to beavers in the GVE (figure 2)—but bea-
vers in wolf-free ecosystems foraged further from water.
Based on beaver foraging patterns or other reasons, wolf pre-
dation was thought to limit beaver foraging distance near
Chapleau, Ontario, Canada [37], Isle Royale National Park,
USA [31] and Thunder Bay, Ontario, Canada [82]. Despite
all of these observations, which were based almost entirely
on patterns of beaver cut trees, no study has presented any
predation-based data to illustrate how predation indirectly
or directly constrains beaver foraging [23]. Our study pre-
sents direct evidence that predators do influence beaver
foraging behaviour in a pattern that is consistent with
many other studies across different systems.
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In addition to altering forest structure and composition,
wolves might also indirectly alter wetland dynamics in
the GVE by reducing the area beavers predominantly
forage in. Beaver-created wetlands undergo a recurring
dynamic process of creation, occupation, abandonment and
re-colonization [60,83]. One of the primary reasons beavers
abandon wetlands is the depletion of food resources in
close proximity to water [84,85]. At some point, beavers
must decide to either forage further from water to secure
more resources or abandon wetlands in search of more suit-
able habitats. Wolf predation, by constraining the distance
beavers forage from water, effectively limits resource avail-
ability and in turn likely expedites resource depletion. Thus,
wolves might indirectly influence and be connected to
larger wetland dynamics by increasing rates of wetland aban-
donment and subsequent recolonization. We posit this is a
logical conclusion if wolves constrain beaver foraging, yet
we acknowledge that it is an untested hypothesis.
290:20231377
6. Conclusion
Central place foraging theory predicts foragers are at a higher
risk of predation when foraging at greater distances from the
central place [86]. Theoretical, experimental and indirect evi-
dence supports this prediction, yet direct evidence has
remained elusive. This evidence gap is in part due to the chal-
lenges of testing this hypothesis on natural predator–prey
systems. We provide empirical evidence that a central place
forager can be killed more frequently when foraging at
greater distances from the central place, suggesting that pre-
dation is a significant ecological and evolutionary force
shaping the movements and behaviour of central place
foragers [29].

More importantly, we demonstrate how predators can
have larger ecological effects by constraining the foraging be-
haviour of prey. Central place foragers can create ecological
‘halos’ by depleting food resources around the central place
[26,31,87], which can have cascading ecological effects [51].
In some systems, these effects reverberate through food
webs and alter ecological processes (e.g. nutrient deposition)
and lower trophic levels [28,30]. Our work indicates preda-
tors can alter the typical distance that central place foragers
will travel for resources, which ultimately influences the
size of these ecological ‘halos’ [29]. Predators appear to
limit the functional area available to central place foraging
prey, and, in turn, limit the ecological effects generated by
central place foraging prey.
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